Firmware Developer's Manual
Chapter F1

Introduction to FPGA Development

© 2012-2020 SkuTek Instrumentation

150 Lucius Gordon Drive, West Henrietta, NY 1458%87
(585) 444 7074
http://www.skutek.com

Summary This chapter of the Developer's Manual is a geintiroduction to the art of programming
the field programmable gate array (FPGA) that espnt on our boards. We will not cover each and
every detail of the black magic. We will rather w#te reader through a set of the HDL code snippets
lifted from our own work with the intent to provideseful examples.

Table of Contents

1 The objective Of thiS CRAPLEI ..ot e e eaans 2
2 The FPGA IITEIATUIE ..o ettt e e e e e e e e e e e s s s s e bbb bbb se et abb e e e e eeeee 2
3 FPGA architecture and programimMingccooooeeeoooeoiieeeeiieiiiiiiiiaa e e e e e e e e e e e e eeaaaeeeeeean e aeen e eeeanns 3
4 Structure Of the FPGA PrOJECT ..ot et e e e e e eeees 4
5 Two kinds of logic circuits, combinatorial and@kedoouiiiiiiiii 4
6 A seemingly synchronous logic, which in fact@nbinatorialccccceeeeiiiiiiiiccee e, 6
7 How the timing requirements are Met iN PracCliCe2........oooe i i 7
8 Controlling the FPGA WIth @ FEQISIEI ... eeeeeeeeeeiiiiiiiiias e e e e e e e e e e ee e e eeeeeeeeeeeea e e aaaaeeeanaeeeannns 8
9 Reading from the FPGA devViCe USING @ MEQISLEYiiiiiiiiiiiiiiiiiee e e e e e e e ee e e eeeeeae e 10
10 Dealing With CIOCK OMAINSuuuitcmmmmm e eeeeeeeeeeeeeiii s s e e e e e e e e e e e e eaaeaeaaaeeeeeeeeessnenannnn e eennnas 11
11 External hard COre ProCeSSOr DUSeeuueeiiiiiii et e e e e 12
12 Internal on-chip SOft COre ProCESSOr DUS.. o evvereeiiiiiiie e e e 13
13 UsIiNg @ ProCesSor's DUS AAUIESScoeiiiiiiiiiiiiiiiiee ettt e e et e eeeaa e 14
14 Making the components visible throughout thgemtooovmiiiiiiiiiii e, 16
15 Making use of the register COMPONENT ..coveeeri i 17
16 Utilizing the dual-port memory BIOCKS ... e 18
17 Addressing blocks of ON-ChiPp MEMOIY ...t 19
18 Multiplexing BRAM memories for CPU readOUL................uuuueiiiiiiiiieeeeeeeeeeeeeeveeeeeeeeeeeaae e 20
19 Synchronizing an external signal to the FPQAIIccooiiiiiiiiiiieee e 21
20 Delaying a signal by a fixed number of CIOCKIEEccoooeeiiiiiiiiiiie e 22
21 Generating a short pulse lasting one ClOCKECYCL............eiiiiiiiiiii e 22
22 Delaying a one-bit signal by a variable numideslock cyclesccceiviiiiiiiiiiicceee e 23
23 Delaying a multi-bit signal by a variable numbéclock cyclesccooooiiiiiiiiiiiien 24
24 Driving the CloCK Off-CRIP ..o e e e e e e eaans 25
25 Driving the data bitS Off-ChiPcooiie e 29
26 ConClUSION @Nd OULIOOKiieiiiiiieeeeeee e e e e e e e e e e e e e e e e et e e e e e 29

P2 A 12] oo =T 1 0 A Lo £ [= PSP 31

1 The objective of this chapter

This chapter of the Developer's Manual provides#&noduction to the art of programming the field
programmable gate array (FPGA) that is presentunioards. We will not cover each and every detail
of the black art. We will rather walk the readeawotigh a set of the HDL code snippets lifted from ou
own work with the intent to provide useful exampM& plan to achieve the following.

* Explain what is the FPGA and what it is not.

* Explain the difference between programming the FRG& programming a processor.
* Advise how to start with FPGA programming and wioagxpect.

* Provide examples of FPGA constructs that we fowseful in our own work.

The chapter was motivated by real life. One ofawstomers decided to develop his own FPGA code,
what is not a piece of cake at all. This chaptélrivelp jump start the effort. It will also helphar
board users to develop their own FPGA configuration

Our company is helping the customers in their FR@@lications in two separate ways.

* We provide FPGA programming services to our custeme

* The FPGA firmware can be developed by the custoner.template for the FPGA firmware
development is available upon request at no cd&t.tdmplate consists of the User Constraint
File (UCF) with all the FPGA pins prepopulated e tcorrect locations. The code file written
in the HDL language consists of the PORT declanatcorresponding to the UCF file. The
body of the HDL file may be empty to allow the dygeers to fill it with their own code.

2 The FPGA literature

Extensive literature on FPGA programming is avadald/e recommend the following reading.

1. a. Pong P. Chu, FPGA Prototyping by VHDL Examphinx Spartan-3 Version.

https://academic.csuohio.edu/chu_p/rtl/fpga_vhailht

b. FPGA Prototyping by VHDL Examples 2nd editiontink MicroBlaze MCS SoC
https://academic.csuohio.edu/chu_p/rtl/fpga_mcsl. kil

c. Pong P. Chu, FPGA Prototyping by Verilog Exarepfdinx Spartan-3 Version.
https://academic.csuohio.edu/chu_p/rtli/fpga_vlaglht

d. FPGA Prototyping by SystemVerilog Examples: iéiliMicroBlaze MCS SoC.
https://academic.csuohio.edu/chu_p/rtl/fpga_mchtisw.

H.F-W.Sadrozinski, J.W@pplications of FPGA's in Scientific Resealtinok).
V.A.PedroniCircuit Design and Simulation with VHDboOoK).
Xilinx Reference Manuals and User Guides.

oA W

Xilinx Application Notes available frorhttp://www.xilinx.com/ Xilinx keeps reshuffling their website
at an amazing rate, and therefore we cannot praviedepointers that are guaranteed to work. The
reader may try the following:

https://www.xilinx.com/support.html#documentation

We recommend the book by Sadrozinski and Wu bedatissthe only literature position addressing
applications of FPGAs in High Energy Physics. Theks by V.A.Pedroni and by P.P.Chu are very

well written introductions to FPGA programming. Tih@oks by P.P.Chu describe substantial and useful
projects using various Xilinx FPGA familis. Xilirwanuals cover the specifics of the Xilinx FPGA
clocking, buffering, and memory structures.

3 FPGA architecture and programming

We will now describe the fundamentals of the Figtdgrammable Gate Array (FPGA) architecture.
The name “gate array” was coined long ago wher~-B@A chips indeed consisted of logic gates and
little else. Nowadays the FPGAs contain many hglel blocks such as memory blocks or arithmetic-
logic units. A modern FPGA consists of many silicdacks (named cores or components) such as flip-
flops, memory registers, logic gates, and arithcaletyic units. The components are connected with
data paths (“wires” or “signals”) that can be selaty enabled or disabled during the chip
“configuration”. Before the configuration the chgpdormant and it is doing nothing. All the patite
closed. The configuration usually happens at pawpett consists of loading the “configuration file”
(also called the “bit file”) from the flash memaiythe FPGA chip. Configuration can be also
performed on demand while the system is runninterAhe configuration has occurred, some data
paths are open, while others are still closed. &lpaghs, that are open, form an interconnectiote pat
(the “netlist”) between the components. The datadedlow along the open paths, from component to
component, according to a periodic “clock” whichshhe supplied to the FPGA chip. On each clock
cycle the data item is transformed by a particatanponent, and then it is transferred to the next
component at the end of the clock cycle. This mafdgperation is commonly named “a bucket
brigade”. A more formal name is a “pipeline” formedh the components strung together, one after
another.

The art of FPGA programming consists of devisirgrietwork of connections between the FPGA
components in order to form the pipeline, whicmsfarms the data according to the desired algorithm
The conceptual difficulty lies in the fact that thetwork bears little resemblance to the algoritatn,
least at the first sight. The FPGA programmer naleselop the connections needed to realize the
desired result. One should remember that the FR&s#gtam” does not describe a process unfolding in
time (like a computer program would do), but ratheretwork of active connections between the
components. Compared with the computer programe tisean additional level of indirection between
the FPGA “program” and the desired result.

Fortunately, understanding of the FPGA operatiossdmt need to be detailed to the last bit. THe tas
of FPGA programming is greatly simplified with ayhtlevel Hardware Description Language (HDL)
such as VHDL or Verilog. The connections are spetiin a synthetic form in HDL, and then
automatically translated into the actual networnktfe particular FPGA. Nevertheless, the FPGA
programming is pretty demanding even when usindnitle-level HDL. Details like numerical error
propagation or integer fixed-point arithmetic néede understood in order to transform the abstract
algorithm into the FPGA implementation.

The DDC digitizer is composed of two independenicpssing units, the FPGA and the ARM Sitara
processor (DSP). The FPGA is connected to the @eRerpose Memory Controller (GPMC) bus of
the CPU. The FPGA ismemory-mapped peripheralith severategistersassigned to hardcoded
addresses in the CPU memory space. The FPGA addrasscollected in a dedicateghder file
referenced by the software programs. The defirstimmtained in the header file must agree with the
addresses that are hardcoded in the FPGA firmware.

4 Structure of the FPGA project

We will use VHDL for the most of this chapter. Aifeg code is very similar, but it uses different
keywords. Both languages are known as Hardwarerpéiso Languages (HDL). We will use the
word “program”, even though a more appropriate tesoald be “netlist configuration”. The HDL

project under the ISE development environment mpmsed of the following.

* The User Constraint File (UCF) collects the phylsicBbrmation such as pin locations, I/O
voltages, 1/O slew rates, clock frequency, andrigmequirements. The format of the file is
documented in the Xilinx Constraints Guide avaiatobm ISE Help menu. Our free template
includes the UCF file with all the information adisty prepopulated.

* The top level HDL file establishes the communicati@tween the netlist that is internal to the
FPGA and the FPGA pins. The correspondence iselkfimthe PORT declaration of the top
level file. The signal names in the PORT and inWi@F file should be identical.

* In addition to the PORT, the top level file alsotzons the ARCHITECTURE of the design
written in HDL. It is OK to put all the code in thplace in small projects. Larger projects
should be divided into several files to improve msainability.

* The lower level files are similar to the main filéhey also have the port and the architecture
sections. The names of their port “pins” do noered the physical pins, but rather to the
internal “pins” of the main file. The lower-levelds “plug into” the top level file as
“components” defined in the lower level files.

* The lower level files can themselves refer to tegthower level. The hierarchy continues, in
principle indefinitely.

* In addition to components defined in the HDL filgsthe developer, there are two types of
components provided by Xilinx. THérary componentsre described ihibraries Guides
available from ISE help. These components are &fgismall. The Core Generator
components are large components that can be exégnsustomized with Core Generator
interactive menu system. Core Generator can beedthom the Windows Start menu.

* The detailed information is available in tK&8T User Guidand other guides that are available
from ISE Help menu.

ISE development system also supports the mixedikzae projects where components are developed
in VHDL, Verilog, ABEL, or schematic diagrams. Wéllwmot cover these details in the present tutorial
Extensive documentation on this and other advatuj@ds is available from the ISE Help menu.

The new development environment is named Vivadae.dimilar to ISE, though of course different. It
is also better, at least according to Xilinx. Picadty speaking, Spartan-6 development is free unde
ISE 14.7 (VirtualBox version), while Artix develomnt is free under Vivado.

5 Two kinds of logic circuits, combinatorial and claked
Logic circuits can be broadly divided into two kéd\combinatorialcircuit is composed of logic

gates, multiplexers, and other standard logic carapts connected together. Such a circuit is regjizi
alogic function also known as boolean functionAn example of a logic function might be

Y <=AandBorC; — Example in VHDL
assignY=A&B|C; /I Example in Verilog

where A, B, C represestgnals(namedwiresin Verilog) whose values can be 0 or 1, represthye
LOW or HIGH voltage levels. The logic functions &@nstructed according to the boolean algebra of
logic values 0 and 1. The boolean circuits are latswn under the namesynchronous logicThe
boolean operatormnd andor (& and | in Verilog) are implemented as logic gatethe actual circuit.

The boolean circuits can be of any complexity. Clexguch circuits will have margvels A level
means “output of this gate is connected to thetiopthe next gate”. Every gate contributes certain
propagation delayo the overall response time of the circuit. Thepgagation time across the gate is
specified in the FPGA data sheet. It depends ofri®&A implementation technology, which is fixed
for a given FPGA family. In addition to the prop#iga across the gates, there is also a propagation
between the gates, which depends on the intersgg@ration. This part of the delay varies from
project to project. It can change between implegots of the same project, because component
place and routes performed stochastically by the software. Themo guarantee that the component
gates are placed at fixed locations without resgrto manuafloor planning which is an advanced
technigue better to be avoided. Propagation betweegates also depends on temperature.

The response time of a combinatorial circuit cary ¥eom single nanoseconds for simple circuits to
tens of nanoseconds in case of many levels. Mudtilasynchronous circuits can produgiches also
known ashazards A glitch is a momentary pulse at the output thatue to unequal propagation delays
through parallel branches of the multilevel circ@ince the propagation delays are never exactly
equal, there is always a risk of a glitch in evasynchronous circuit of appreciable complexity. The
glitches can appear or disappear when the tempernatahanging because of the temperature
dependence of the propagation delays.

In principle, the FPGA can be used to implementir@ly combinatorial circuit of tremendous
complexity, because it contains many millions @fitogates. The response time of such a circuit @voul
be long, and the potential for glitches would bgédrherefore, the FPGA is always usingack that

is a periodic square wave connected to the dedicédeking pin Quite often there are more than one
clock in the FPGA system. The DDC digitizers use thocks: thanain board clocks used for any
purpose such as clocking the ADCs, while phacessor clocks used to connect the FPGA to the
processor. The clock pins are preassigned in geetémplate that you received from us.

The circuits that are clocked are also namsyithronousThe FPGA works according to this principle.
We call it a “bucket brigade”. A more formal nanseai “pipeline” formed with the structural elements
strung together, one after another. In the rethisfchapter we will be dealing with synchronougido
most of the time.

Preparing for the following discussion, we remihdttthe actions of a typical synchronous circugt ar
latched on the LOW~ HIGH transition of the clock. The opposite edgéycally “wasted” for doing
nothing. The “waste” is due to the fact that thdlipflops have only one clock input. They can chan
their state on the particular clock edge, but hetdther. The particular edge is typically chos@W.

— HIGH. In case the other edge was chosen, theogpesite one would be “wasted” anyway. There
is very little benefit in using the HIGH> LOW clock edge in a regular design. The complergnt
edges are typically used in the Dual Data Rate (P@Ruits, which is an advanced topic. Please read
any DDR application note for more information abtine DDR technology.

6 A seemingly synchronous logic, which in fact is cabinatorial

The following example was discussed on the Oberaiting list in December 2019 in the context of
FPGA interfacing to an asynchronous static RAM ¢dRAM). This chip presents a challenge
because it does not have a clock pin. It ratheeetgpa sequence of signals, such as addresses, data
and read/write strobes, whose edges follow onehanotith time sequence specified in nanoseconds.
(l.e., the ASRAM data sheet is saying something ftke WRn edge must follow the address transition
within a time window, no sooner than X and no ldem Y, specified in nanosecohdld he challenge

of designing such an interface is discussed bZRUWPin reference$a andlc, chapter 11. The example
of the WRn signal is discussedlnon page 293. This signal must transition LOW t&HIwhen the
address and data are stable, what happens iri‘thal®of the clock cycle, after the clock has
transitioned from HIGH to LOW. This may be probldinan the system using the rising edges.

A seemingly logical way of generating the proper MtRansition LOW— HIGH during the 2! half of
the clock cycle was discussed by P.P.Chu as foll(frefessor Niklaus Wirth also used this soluiion
his RISC5 soft core project, which precipitated df@rementioned discussion.) The method is known
as ‘clock gating. The goal is to create a WRn signal transitioni@GH on the falling edge of the
clock. This is implemented by forming a logic ORtleé inverted clock signal with the WRIlong signal
which is LOW during the entire clock cycle, for hahe HIGH and the LOW clock phases. The
combination (WRlong OR ~clk) yields (0 OR 0) = Oidgrthe ' half period, and (0 OR 1) = 1 during
the 29 half period. It means that (WRIlong OR ~clk) is tfesired logic function, which provides the
transition from LOW to HIGH on the falling clock gel.

WRn <= WRIlong OR NOT clk; — VHDL
assign WRn = WRlong | ~ clk; — Verilog

This simple solution has a problem that the instasfdhe transition is poorly defined because both
signals contribute equally to the occurrence ofttaesition. Whichever signal makes the transition
later than the other, will define the time instantleis creates a problem, because the clock disioit
tree is rigidly defined in the FPGA, while the réguogic routing is subject to variations. Thehaat
time of the WRIlong signal will depend on the peartties of the routing of a particular design. (And
even for the same design it can stochastically watty the place-and-route execution.) This creates
essentially unreproducible design, which is a lesdure indeed.

So we have to introduce the definitionpwbper synchronous logi@s opposed teeemingly
synchronoushown above. The very fact of using the clock dagsnake the logic properly
synchronous. The clock must also be used in thegpnway, which mearsmploying the flip flops
Combinatorial functions are not properly synchrasaven if they use the clock as one of their isput
And indeed, techniques suchasck gating(shown above) are strongly discouraged by the FPGA
experts because the signal timing is poorly defiwél such circuits.

The properly designed clocked circuit wie the clock signal as the input to the flip flpeding the
clock to any regular gate is poor design. It caly be used if the edge timing is not at all impatfa
which is seldom the case. The reason that théldigs should be used for clocking is that the clock
signals are distributed along thdidicated clock distribution network treMl flip flops, in the entire
chip, will receive their clock signals at the satn@e (within tight tolerances), but only in the eas
when the clock is distributed with the dedicatetivoeks. The clock can never leave such a network
and be routed to the regular gate, because anypailch are not well specified timing-wise.

The proper way of coding the above circuit is engitiag the fact that the clock and the regulardogi
are not equal. The clock is latching the regulgnaison the edges of the clackhis is done with a flip
flop, whose inputs are not equal. (They are equabse of the regular gate.) The notation may look
bizarre. This notation is how the HDL is coding foe flip flop. For clarity this design is usingtho
clock edges, which may not be supported by the FEi@Alitry. If this was the case (as signaled by th
compile time error) then the designer should resottte DDR techniques discussed by P.P.Chu on
page 293 of reference.

— VHDL,; the Verilog equivalent is left as an exerci se
process (clk) begin
if raising_edge (clk) then
WRn <= WRlong;
else if falling_edge (clk) then
WRn <= NOT WRIong;
end if;
end process;

7 How the timing requirements are met in practice?

Now we can elaborate on how the timing requiremargsactually met. Conceptually this is done in
the following steps.

1. Arrange the “bucket brigade” using the regisiesignals. Every registered signal is a flip flgp b
definition. VHDL does not use a keyword for suogsils. Verilog is using the keyworeg.
When oneeg is assigned the value of anotineg, then the data transfers only happen at the clock
edges. The chain of assignments establishes tlokébbrigade”. Remember that both in VHDL
and in Verilog you use the <= operator within timeing text block to perform the clocked data
transfer. Use the constrlROCESS (clkp VHDL. In Verilog it isalways @ (posedge(clk))

2. Write the combinatorial expressions to be exatbietween the registered assignments. These
expressions afegic functionscomposed of logic operators.

3. Introduce the clock period constraint into yoI@F file (in ISE) or XDC file (in Vivado). In plain
English: You need to tell the synthesis how fast w@nt to run the design.

4. Run the synthesis and examine the timing repboisk for the “timing violations”. If the
software cannot make the combinatorial functiormgppgate from one flip flop to the next one
within the clock period, then it will inform you ¢fie fact. It will also tell you, which logic
function is taking too long.

5. Now you need to think. What is more importanyda? Is the long logic expression so valuable
that it cannot be calculated in pieces? Then y@d e increase the clock period and drop the
clock frequency. Conversely, is the clock frequemegortant? Then you need to break the logic
functions into pieces, introduce new intermedisgeas into the bucket brigade, and assign partial
results to the intermediate flip flops.

In practice you will need to learn the timing coast syntax, which is very murky and not obvious
with ISE and perhaps a bit easier with Vivado. Kegpn mind the preceding explanations should
provide a reasonable guideline for further practice

8 Controlling the FPGA with a register

We just said that thboolean logids represented with values 0 and 1, meaning LOWHiIGH

voltage levels. It is true in the logic textbookst it is not how the electrical connections worikhw
FPGAs. There is one more electrical state thateeslito use, and that is OFF, coded as 'Z' in the
VHDL language. The device that is alwaively drivingthe connection either LOW or HIGH
cannot be be put onbaiswhere it may cause tleontentionwith other devices. We need to be able to
turn the device OFF, and this is what the high idgpee state 'Z' is doing for us. We are now ready t
see the example circuit coded with the followingMHsnippet.

IOBUS <= local_signal WHEN read_enable ='1' ELSE (others =>'Z");

This line of VHDL should be read as follows. TheBOS is declared in the PORT. It is assigned to the
off-chip bus in the UCF file. The bus candréven by thelocal_signal when thaead_enable is
requesting the FPGA to do so. Otherwise the FPG# affi the output drivers. The VHDL construct
others is a handy notation meaning “all the other bit$@BUS”. This shortcut evaluates to “all the
bits” when used as shown. We will now show thereniHDL “program” surrounding the snippet.

1. -- CTRL_reg_CPU_writes.vhd. A register CPU --> F PGA.

2. -- (C) Wojtek Skulski 2003-2011.

3. -- This register can be written and read back by the CPU.

4. -- It does not read data from the FPGA fabric.

5. -- It can only read back the data previously writ ten to it.

6. -- Input: CLK, CS, WR, RD active HIGH, the usual r/w controls.

7. -- CS should be tied to the address decoder at the higher level.
8. -- Output: regout is static data to drive the co ntrolled circuitry.
9. library IEEE;

10. use IEEE.std_logic_1164.all;

11.

12. ENTITY CTRL_reg_CPU_writes IS

13. GENERIC (regWdt: INTEGER := 16);

14. PORT (

15. CLK :in STD_LOGIC; --- system clock from BF

16. CSs :in STD_LOGIC; --- circuit select

17. WR :in STD_LOGIC; --- write enable

18. RD :in STD_LOGIC; ---read enable

19. IOBUS :inout STD_LOGIC_VECTOR (regWdt-1 downto O);
20. regout: out STD_LOGIC_VECTOR (regWdt-1 downto 0)
21.);

22. END CTRL_reg_CPU_writes;

23.

24, ARCHITECTURE CTRL_reg_behavior OF CTRL_reg CPU_w rites IS
25. SIGNAL rena, wrena: STD_LOGIC;

26. SIGNAL local: STD_LOGIC_VECTOR(regWdt-1 downto 0O);

27.

28. BEGIN -- ARCHITECTURE IMPLEMENTATION

29. wrena <= '1' WHEN ((CS='1") AND (WR='1") AND (RD ='0") ELSE "0}
30. rena <='1"WHEN ((CS='1") AND (WR='0") AND (RD ='1") ELSE '0'
31.

32. IOBUS <= local WHEN rena ="'1' ELSE (others =>"' ZY;

33.

34. register: PROCESS (CLK, wrena) BEGIN

35. IF rising_edge(CLK) THEN

36. IF (wrena ='1") THEN

37. local <= 10BUS; — from CPU to fabric

38. END IF;

39. END IF; -- CLK

40. END PROCESS register;

41.

42. regout <= local; -- static output from the regis ter to controlled logic
43. END CTRL_reg_behavior;

Now we will explain what this circuit is doing. Birof all, this register is @eomponenteclared in its
own file. The component file is only a templatettban banstantiatedin the main VHDL file as many
times as needed. In this respect the registekasaln integrated circuit that gets purchased fr@atoee
in several copies. In the electronic industry ladl topies are identical, but here they are notusecthe
template iparametrizedwith the keyword GENERIC meaning that the bit \wigt specified while
instantiating the template. The default width “1&bnly a placeholder. The component has several
inputs: the clock, the active-high read/write se®RD and WR, and the active-high chip select CS.
The IOBUS will be connected to the system bus whstantiating the component. Finaliggout is
astatic array of bitghat can be connected to anything inside the FREARGA had LEDs on top, we
could connectegout to these LEDs and turn them on and off by writiodhe register.

The register istaticin the following sense: imagine that we write atd one of the bits. This “1” will
stay permanently there until we decide to writ@'atb the same bit. Therefore, this component is
intended tacontrol some circuitry in the FPGA. The register bits tam some options ON and OFF.
Alternatively, the value written to the registendze used as a calculation coefficient.

The register is read/write in the limited sensey &alue written to the register can be read bacthby
processor. We say that the value has b&tehed However, the register cannot be used to read any
output calculated by the FPGA. The registarmglirectional It can transfer the bit pattern from the
processor to the FPGA, and it can remember itseydlut the other direction does not work. The
reason for this restriction is that any circuithimt the FPGA can have only one driver. Since tlnedr
in this circuit is driving towards the FPGA, addithg opposite driver is not possible.

We said that the latched value can be read backt wiplies that some sort ofemoryis implemented
in the section beginning with the keyword PROCEB® word “register” is a hint for the reader, Qut i
is a purely decorativiabel. Most often such labels are omitted from the VHDbgram. The memory
is always implied when the keyword PROCESS is usgdther with a clockwhich is the case in this
example. The clock is nindicated by the name CLK, but rather by invokihg predeclared function
rising_edge . It is the combination of the PROCESS with theesteentiF rising_edge , that makes
the PROCESS intoféip-flop. A flip-flop is a memory element that can stay @NOFF. The names
“register” and “flip-flop” are synonymous.

If this sounds confusing, then it really is. Thagen for the confusion is that the VHDL progranes ar
not being literally translated into the FPGA citeyi The VHDL compilers (and the Verilog as well)
are using a method called “inference”. The compitky not translate the text, but rather they sean t
text looking for familiar patterns. When the conepitees the pattern, it will “infer” the circuitry.
Another name for infer is “guess”. Yes, it is riglihe compiler is guessing what the programmer
meant to say. It is in the programmer's best istdfeat the compiler is guessing right. The progrem
is advised to follow the code patterns that weggssted by the compiler vendor. The patterns are
available from the ISE Toolbar after pressing ilgatmost icon that looks like a bulb. Navigate to
VHDL — Synthesis Construcend use only these snippets in order to help dhgder guess right.

One has to get used to such patterns. After a \ilingle will become the second nature. The patterns
may look confusingly similar to one another. Heram example of an apparent similarity.

PROCESS (CLK, RST) BEGIN
IF rising_edge(CLK) THEN
IF (RST ='1") THEN
local <= (others =>"0";
ELSE
local <= previous;
END IF;
END IF; -- CLK
END PROCESS;

©COoNOT~WNE

This snippet may look confusingly similar to thewous one. It translates to a one-clock delay. fAihe

patternlocal will be an exact copy of theevious

, but delayed by a single clock cycle. The signal

RST implements eesetthat holds the bit pattern at “00..0”. We did nse labels in this example.

9 Reading from the FPGA device using a register

We need a complementary operation to the one disdysreviously. The following code will allow to
read a single word from the FPGA. This registexgain unidirectional for the reason discussedezarli

1. -- CTRL_reg_CPU_reads.vhd.

2. --(C) Wojtek Skulski 2003-2011.

3. -- This register cannot be written by the CPU. Th
4. -- Data either comes from another clock domain or
5. --If the other domain is not stopped then local
6. -- Input from CPU: CLK, CS, RD active HIGH.

7. -- CS should be tied to the address decoder at
8. -- Input from the fabric: data to be read by the
9. library IEEE;

10. use IEEE.std_logic_1164.all;

11.

12. ENTITY CTRL_reg_CPU_reads IS

ere is no WR control.
it is static.
will be complete mess.

the higher level.
CPU from the FPGA fabric.

13. GENERIC (regWdt: INTEGER := 16);

14. PORT (

15. CLK 1in STD_LOGIC; --- system clock from CPU

16. Cs 1in STD_LOGIC; --- circuit select

17. RD 1in STD_LOGIC; --- read enable

18. IOBUS :inout STD_LOGIC_VECTOR(regWdt-1 downto O);
19. fabric: in STD_LOGIC_VECTOR (regWdt-1 downto 0)

20.)

21.END CTRL_reg_CPU_reads;

22.

23. ARCHITECTURE CTRL_reg_read_behavior OF CTRL_reg_ CPU _reads IS
24. SIGNAL local: STD_LOGIC_VECTOR(regWdt-1 downto 0

25.

26.BEGIN -- ARCHITECTURE IMPLEMENTATION

27.10BUS <= local WHEN (CS="1") AND (RD='1") ELSE (others =>'Z2";
28.

N
(o]

.PROCESS (CLK) BEGIN

30. IF (rising_edge(CLK)) THEN

31 local <= fabric; -- t he cruci al
32. ENDIF; -- CLK

33. END PROCESS;

w
&

.END CTRL_reg_read_behavior;

nodi fication is here

This code is very similar to the previous one,thetsignal drivers are reversed. The FPGA fabric is
now driving thelocal register upon the rising edge of the clock. Presipit was the IOBUS whose
value was latched, but now it is tlaeric that is coming from within the FPGA. The modificat is
easy to overlook when looking at the text.

The lesson from the examples is that a seeminghpnmmodification of the source code can lead to
profoundly different circuitry. In one case we désed a register controlling the FPGA, in the other
case we described a readout register, and in taatmee we described a delay by a single clock.

10 Dealing with clock domains

The previous example included a warnfifghe other domain is not stopped then local viaé
complete mess’lt refers to the fact that the FPGA operates uhale different clocks. One is the
“main clock” that is driving the daughter card. Tdtber is the CPU clock that is driving the readout
bus. The circuitry that is synchronized to a patfc clock is called thelock domairof this clock.

The two clocks are completely independent. Imatjiat data words are changing under both clocks.
In the ADC clock domain the fresh ADC samples a&iad written to the word namesbric in the
previous example. At the same time the Blackfireading the same word using theal register that
is controlled by the CPU clock. It is easy to imregthattabric may change in the middle of the

local being read out. The result will be a “complete siidecause some newly arriviatlric bits

will make it through theabric — local transition, and some perhaps not. One should rdreethat
the circuitry is never perfectly balanced alongdalla paths. Some bits will be delayed by a fraabib

a nanosecond more than other bits, and the slowgawitl not make it.

The comment was warning against such a situatidraathe same time it provided a hint that “the
other domain should be stopped”. It does not mieanthe clock itself should get stopped. Stopping
the clock will throw all the phase lock loops (PLat of synch. Clocks should never get stopped.
However, the data acquisiti@an be stopped. And it should, because there is pttiat in reading the
sample that is changing during the readout. Oneel#ta words in the ADC clock domain get static,
the other clock domain can safely read them out.

The simplest method of dealing with multiple clakmains is to stop changing the data words in one
clock domain, while the words are being used inatier domain. There are other methods allowing
both domains to keep running, but they are morepticated. For example, the designer may use a
first-in, first-out buffer (FIFO) between the twomains. The FIFOs provide means of “crossing the
clock boundary” to avoid the bit synchronizatioolplems. The FPGA programmer has to study the
relevant chapters describing the particular sohsti}ecommended by Xilinx. (Keep in mind that other
FPGA vendors may have implemented the relevant coens differently from Xilinx.)

We conclude this section with two recommendatiangerning multiple clock domains.

1. Always stop changing the data in the clock dontiaat is producing the data before using the
data in another clock domain. This solution isfyreddical, but it is guaranteed to work.

2. Read the relevant chapters from the FPGA textboelaling with the particular FPGA family
that you are using.

11 External hard core processor bus

There are two ways of connecting a processor t&B@A design:) either arexternal hard CPlbr

(2) aninternal soft CPU The third case would be arternal hard CPU like found in Zyng devices.
Such hard FPGA/CPU combinations are more like gagate chips, involving a hard interface
between the hard silicon CPU and the FPGA fabvienghough they are enclosed under the same lid.

We will now discuss the two-chip solution (1), whemnexternal hard silicon is added to the FPGA.
We will illustrate the bus design with the actuala®dog Devices Blackfin BF561 processor interface.

Themicroprocessor busonsists of an address, data, a clock CLK, antta@lostrobes: chip select CS,
write enable WR, output enable OE, and read erfRBleThe latter two strobes provide essentially the
same functionality. They may be merged into onaaidf they are separated, then their timings are
different and only one of them is needed. Suchildatan be found in the processor data sheet.

Most hard silicon chips use astive LOWconvention for the controls. In such a case theydanoted
with an added "n”, “b” (for “bar”), or “#”. For exaple, both OE# and OEn mean “OE active LOW".

ENTITY Blackfin_BF561 is PORT (

-- FPGA is connected as BF external memories AMSO a nd AMS1

-- BF AMS0 and AMS1 spaces are both configured in 3 2-bit mode

-- ADDR(1:0) are not active in 32-bit mode.

-- All addresses must be on 32-bit boundaries. ADDR (1:0) are both ignored.
BF CLK :in STD_LOGIC; -- clock from the BF 561 (120 MHz)
BF_AMSO_b:in STD_LOGIC; -- AMSO0: LOW chip se lect for O th 64 MB range
BF_AMS1 b:in STD_LOGIC -- AMS1: LOW chip se lect for 1 st 64 MB range
BF AWE_b :in STD_LOGIC; -- LOW write strobe, AWE#
BF _ARE_b :in STD_LOGIC; -- LOW read strobe, ARE#

- BF_AOE b :in STD_LOGIC; -- LOW out enable, A OE# (use either AOE# or ARE#)
BF ADDR :in STD_LOGIC_VECTOR(25 downto 2) ; -- ADDR increments by 4
BF _DATA :inout STD_LOGIC_VECTOR(31 downto 0) ; -- BF data bus

);
END Blackfin_BF561;

There are a few things to be noted in these demasm The meaning atad andwrite is from the BF
point of view. All the signals except BF_DATA argwen by the processor. They are declared with
direction “in”. It means that the processor is lus mastemwhile the FPGA is thbus slavelt has the
benefit that the bus cycle involves neither a haakis nor an acknowledgment from the FPGA. The
bus cycle will complete even in the abnormal sitrgtwhen the FPGA is not even configured. (Which
makes no sense, but it can happen). It meansritetraormal condition at the FPGA side will not
automatically deadlock the processor, what couftpba, if the bus cycle required a handshake.

The BF561 bus is shared among the SDRAM and thadkspnous Memory Spaces (AMS). The word
asynchronouss a misnomer, because the AMS protocol is symabus to the clock BF_CLK.
Nevertheless, Analog Devices named it this wayhBloé ADDR and the DATA bus carry the signals
directed to the FPGA as well as to the SDRAM cloptside the FPGA. It is an old design style,
because newer CPU chips use two separate busasckssing the SDRAM and the (a)synchronous
RAM. The internal FPGA circuits are seeing a lo6&fRAM activity not directed to the FPGA. The
remedy consists of using the AMS strobes to operritate buffers to only the AMS transactions.
The SDRAM transactions stay behind the input gates.

The DATA bus between the BF561 and the FPGlidgectional indicated with the keyworhout. It
means that the same 32 wires are sometimes drivdrelCPU, and sometimes by the FPGA. The
direction is defined by the data strobes AWE#, AR&# AOE#. The latter two are functionally
equivalent. The logic inside the FPGA should dtive DATA bus only when it is expected to do so.
Otherwise it will createontention which means both sides of the DATA bus are dg\time same
wires. Such an abnormal condition can even burrchifes. A question then arises, how the designer
can avoid a possible catastrophe? (Unlike in pglita catastrophe in electronics benefits nobady, s
is better avoided.)

There are two ways to avoid burning the chips. fid@lware method consists of inserting series 50
ohm resistors into the DATA path. There are speguad or octal resistor packs designed for this
application. Resistors will limit the current. Theyll also prevent signals from ringing. A diligent
board designer should always use such resistoispAdkiligent firmware designer should reduce the
FPGA output drive current to a low value, like 2 ¥4 mA. There are configuration options for
doing this. Low drive current will prevent burnitige chips even if the contention happens.

The bidirectional bus protocol is meant to limie thumber of wires at the expense of both the
increased chip complexity and reduced performahice.former is of little concern because silicon is
cheap and powerful these days. The performancedwoydrove if the two directions were assigned to
two separate paths routed in parallel. Some vegly performance chips are doing just that, but istmo
cases it is too much of a hassle. Anyone who hatedoover fifty Blackfin wires will agree that
doubling the number is not desired. One should tiatethe address, data, and strobes are doubled
rather than just the data part of the bus.

12 Internal on-chip soft core processor bus

Despite their lower performance, the soft coresb@@ming increasingly popular due to their
flexibility. Soft cores exist in many varietiespin very simple 8-bit microcontrollers (PicoBlaz&2-

bit processors (MicroBlaze, Nios-2), all the wayta4-bit RISC-V. In this section | will focus @n
32-bit soft core named RISC5 authored by ProfeNgdaus Wirth. It is different from RISC-V despite
a similar name.

The designer of an on-chip soft processor bus doeseed to worry about wire routing. The FPGA is
providing thousands of pre-routed wires which &ady to use. Using the tristate buffers is not
possible inside the FPGA because such circuitonig available at the chip periphery for the pugos
of constructing the external buses. One can uskisitate coding style, which is however translated
into gates and multiplexers because internallytriseate buffers are not available.

Due to lack of tristate elements, the on-chip pssoe buses cannot be bidirectional. They are rather
unidirectional, eithem or out. In the example below, the incoming DATA bus isnealinbus The
outgoing DATA bus is nhameautbus Both the ADDRESS bus and the strobes are outgding
processor is driving the outgoing buses, which redis abus masteit is a very simple design.

In case of the RISC5 core the design was madetisligiore complex because of the memory mapped
videoframebufferimplemented in the external RAM. The video conéolvas made a secondary
master which would occasionally steal the bus acfresn the main CPU to refresh its internal video
pixel buffer. This technique is namddect memory acceg®MA). In order to make it simple, the
secondary master did not ask the main CPU for sion to use the bus (which would have been
named Bus Grant Request), but rather it used aadstallX signal to temporarily suspend the CPU.

/I RISC5 soft processor core by Niklaus Wirth 31.8 .2018
/I with interrupt and floating-point
I https:/Ipeople.inf.ethz.ch/wirth/ProjectOberon/i ndex.html

module RISC5(

input clk, rst, irq, stallX, //in: clock, reset , interrupt, stall the CPU
input [31:0] inbus, /lin: data

input [31:0] codebus, /l'in: program inst ruction memory

output [23:0] adr, /lin: address in e xternal RAM

output [31:0] outbus /l out: data

output rd, wr, ben, [/l out: memory strob es: read, write, byte enable

);

| added comments to the original Verilog modulelaetion. The interface is similar to the previous
Blackfin interface, but it has three unidirectiodata buses Thiebusand theoutbusare both the

DATA buses,in or outthe CPU. The third DATA bus is nameddebuswhich is a syntactic leftover
from the original Harvard architecture of this safte. (Harvard architecture uses separate memories
for instruction and data.) Outside the coredbdebuds multiplexed among the on-chip BRAM
containing a bootloader, and the off-chip asyncbusnrRAM. The RAM pins, which are bidirectional,
are multiplexed between theaatbusin the outgoing direction, andbusin the incoming direction.

The two buses, which are unidirectional on chip,raerged into a single bidirectional bus off chip.

13 Using a processor's bus address

The FPGA is a big device with many resources thatle addressed individually by the CPU. Inside
the FPGA the resources are connected tadainess decodewhich is yet another pattern of the VHDL
code. There are several recommended ways of wtihiaglecoder in VHDL. First we will show the
code snipped from the ISE Language Templates,tarmdwe will show another equally valid way of
coding the same.

1. --- Address decoder
2. --- Code pattern from ISE Language Templates -> S ynthesis Constructs

3. process (clock) begin

4 if (clock'event and clock ='1") then

5. if (reset ='1") then

6. output <= "0000";

7 else

8 case i nput is --“input” is the address

9. when "00" => output <="000 1"
10. when "01" => output <="00 10"
11. when "10" => output <="0 100"
12. when "11" => output <=" 1000
13. when others => output <= "0000";

14. end case;

15. end if; -- reset

16. end if; -- clock

17. end process;

First of all we see that VHDL is case insensiti8econd, here we see yet another incarnation of a
“process”. Third, Xilinx chose not to use the fuoaotrising_edge(clock) , which we find more

descriptive thamlock'event and clock ='1' . The two idioms are exactly equivalent. Either way
the VHDL compiler will inferoutput as a register that is synchronized to the clock.

The pattern of a “walking 1” in lines 7 through ib@plements a decoder. Every binary representation
of theinput address gets translated to a “1” in the corresipgngosition. Theutput bits should be
connected to circuit-select CS inputs of the regisomponents shown earlier. Only single regisiér w
drive the bus because only a single “1” is activarg given time.

We will now demonstrate another way of writing Haglress decoder that looks remarkably different.
We use this form in our own VHDL code.

1. RawSelect <=

2. "000 1" WHEN ADDR (25 downto 2)="000000000000000000000001 "ELSE
3. "00 10" WHEN ADDR (25 downto 2)="00000000000000000000001 0" ELSE
4. "0 100" WHEN ADDR (25 downto 2)="0000000000000000000000 11" ELSE
5. 1000" WHEN ADDR (25 downto 2)="000000000000000000000 100" ELSE
6. (others =>'0");

7. RegSelect <= RawSelect WHEN (BF_AMSO0 = LOW) AND (BF_AMS1 = HIGH)
8. ELSE (others =>"'0";

Unlike the previous decoder, the resultant cirauilitbe combinatorial rather than registered. Itl\we
susceptible to glitches. It is virtually guaranteledt the glitches will occur iRawSelect because all

23 address bits cannot be perfectly synchronizkd.designer must somehow know that glitches will
not be a problem before using this circuit. How wanknow that this solution is safe to use?

If our CPU is Blackfin from Analog Devices, theretanswer can be found in the Blackfin data sheet.
It specifies the timing between the address bitstha read/write strobes implementing the industry-
standard memory bus. The WR and RD strobes thaiosamgected to the registers (see previous code)
become active many nanoseconds after the transitibthe address bits. Even though Ra@Select

may not be valid during the address transitiors, piariod of invalidity happens outside the activget
window that is defined by the memory strobes. Graukl note that the strobes originate from a
thoroughly tested microprocessor chip and therefweg are safe to use. The conclusion from this
example is that the validity of a circuit cannetdstablished without knowing the context in which
this circuit will operate. In principle, glitcheseaa bad thing. However, their presence may beerexad
completely irrelevant by the context of the applma

There are a few other important points to notédnis €xample. First, we are using the address bits o
the Blackfin processor BF561. The designer neegsuy the processor's data sheet and its Hardware
Reference Manual (HRM) before implementing the adglidecoder. The processor must operate in the
proper memory mode (32-bit mode in this case) bezate are decoding its address bits downto 2.
The two least significant bits (LSB) are not deabtiecause they are not driven in the 32-bit mode.
These details are explained in the HRM.

Another detail concerns the asynchronous memorges(@@MS) strobes. There are four such signals in
case of the BF561, AMSO through AMS3. Each on@ldressing a separate 64-megabyte range of
memory. Two of these are used to address the Ethand the USB chips outside the FPGA. The
remaining two, the AMSO and AMS1, are routed toRR&A. These two signals are used in our
decoder tayualify the address bits. According to the code from tle&ipus page, the signal

RegSelect is active (i.e., non-zero) when the AMSL1 is actieis strobe is directed to the AMS1

address range that can be found in the proceskddssheet. Utilizing the AMSx strobes is mandatory
because the same ADDR bit combination will occuioimr cases, once per AMS memory space. If we
neglected to use the AMS strobes, the FPGA cowlglored to the memory request directed to the
Ethernet chip, causing an immediate system crash.

One has to combine all the above information ireotd calculate the memory addresses issued by the
processor. The following details have to be kephind.

1. Two LSBs 0 and 1 are not used by the decodermedhe processor is working in the 32-bit
mode. Consequently, one should extend the bitnpatte the right by two bits “00” before
calculating the addresses to be used in the C h&kete

2. The AMSx spaces start at fixed “base addresgeiified in the data sheet. The AMS1 base
address has to be added to the bit pattern obther|25 address bits (23 bits from our example,
extended with two LSBs as explained above).

3. All the memory strobes originally issued by tlmegessor are active-low. The strobes are
converted to active-high inside the FPGA. We usesittive-high convention in the FPGA
designs because several library components expeletestive-high signals.

We will now provide the resulting addresses thatBhackfin processor will issue to access the FPGA
registers connected to the address decoder. Tterrshould double check that his/her address
calculations yield the same results.

0x2400 0000 unused

0x2400 0004 1 *t register
0x2400 0008 2 " register
0x2400 000c 3 ™ register
0x2400 0010 4 ™ register

14 Making the components visible throughout the pragct

The two types of registers shown earlier are exampf components that you can use throughout your
projects. There are three important things to keepind.

1. The component can exist in more than one coplyré@ct analogy with hardware components.

2. Each time you instantiate the component, yowcerating a separate hardware copy of it.
Components are built from hardware elements sugai&s, flip-flops, etc. These elements are
taken from the enormous pool provided by the FP&#i€ and assembled into a local instance
of the component that you are instantiating.

3. Unlike electronics bought in a store, the VHDIogmwonents do not have to be identical. If the
component was parametrized with GENERIC statemémgg, you can change the parameters
each time the component is instantiated. In sudayayou can create several registers of
different bit widths, for instance.

We will now discuss how to make the best use oMH®L component files that we presented earlier.
First of all, the component instance must matchPO&T declaration in the component source file. In
principle, it should be sufficient to declare th@RT twice: once in the prototype file, and the seto
time when instantiating the component. HoweverMR®L committee decided otherwise. They

decided that the PORT declaration has to be regh@ae more time before the component is
instantiated. It is a bit annoying. This (mis)featof the VHDL can be worked around as follows. We
collect these redundant component declarationsaifRACKAGE that is used in all our files. The
package makes the component declarations visiledghout the entire project.

-- BlackVME_types.vhd. Package collects all our de clarations.
-- (C) Wojtek Skulski 2011-2012.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

PACKAGE BlackVME_types IS

COMPONENT CTRL_reg_CPU_writes -- component #1
GENERIC (regWdt : INTEGER := 16);
PORT (
CLK :in STD_LOGIC;
CS 1in STD_LOGIC;
WR :in STD_LOGIC;
RD :in STD_LOGIC;
IOBUS :inout STD_LOGIC_VECTOR (regWdt-1 downto 0);
regout : out STD_LOGIC_VECTOR (regWdt-1 downto 0)); - - output

END COMPONENT;

COMPONENT CTRL_reg_CPU_reads -- component #2

GENERIC (regWdt : INTEGER := 16);

PORT (

CLK :in STD_LOGIC;

Cs 1in STD_LOGIC;

RD :in STD_LOGIC;

IOBUS :inout STD_LOGIC_VECTOR (regWdt-1 downto 0);

fabric : in STD_LOGIC_VECTOR (regWdt-1 downto 0)); -- input
END COMPONENT;
END BlackVME_types; -- end of the file

The PACKAGE declaration is similar to the C langa&gader files that establish “prototypes” of C
functions. Just like the header files, VHDL packagee used throughout the project. The VHDL file
that is going to make use of the components valitss follows.

1. library IEEE;

2. use IEEE.STD_LOGIC_1164.ALL; -- basic VHDL

3. -- Our own types, constants, and components in fi le BlackVME_types.vhd
4. use work.BlackVME_types.all;

The package declarations are compiled into a stdnarkhorse library namegork during project
compilation. The libraryork is automatically included by all files in the pgof. It does not need to be
mentioned with thébrary clause. It is sufficient tase our package in line 4. From then on all the
components collected in the package are knownetgtbject.

15 Making use of the register component

Each time you instantiate the component, you aatitrg a separate hardware copy of it. Just like an
other electronic hardware, the component instaneg tve connected to some physical wires. The

wires are called “signals” in VHDL. The followingbde snippet is instantiating a register that allows
the Blackfin processor to toggle several contrtd biside the FPGA. This snippet should be pubén t
architecture implementation of the main projedc.fil

1. -- Control register CPU --> FPGA

2 BFcontrol: CTRL_reg_CPU_writes -- CPU control o ver FPGA
3 GENERIC MAP (regWdt => 16)

4 PORT MAP (

5. CLK => BF_CLK,

6 CS => RegSelect (0),

7 WR =>BF_WRENAL,

8 RD => BF _renal,

9. IOBUS =>BF_DATA (15 downto 0),

10. regout => BF _ctrl_ Reg (15 downto 0));

Apparently the VHDL committee was very fond of #meows => and <=. In this code => means
“connect”. The inputs of the register are connettetthe Blackfin memory signals. The chip select CS
is tied to the address decoder shown earlier. Titgub is wired to the control bits_ctrl_Reg . These
bits turn ON and OFF certain firmware features. ¢@mmpleteness we show how the Blackfin memory
strobes are conditioned before being wired to ¢ggster. The signals marked with “_b” are activerlo
signals from the processor. They are convertedtiveahigh signals before being used in the FPGA.

1. -- Convert active-low signals from Blackfin t 0 active-high
2. BF_AMS1 <= NOT BF_AMS1_b; -- AMS1 memory space

3. BF_WR <= NOT BF_AWE_b;

4. BF_RD <= NOT BF_ARE_b;

5. BF_renal <= BF_AMS1 AND BF_RD AND (not BF_WR);

6. BF_WRENA1 <= BF_AMS1 AND BF_WR AND (not BF_RD)

16 Utilizing the dual-port memory blocks

The on-board Spartan-6 FPGA contains 603 kilobgtekial-port block memory (BRAM) partitioned
into as many as 268 memory blocks, 18 kilobits eltdking effective use of the BRAM is
tremendously important in many applications. Theeetwo ways of achieving this goal.

1. The blocks can be instantiated “by hand” in tla/ \@escribed in the previous section. One
needs to use the library named UNISIM that is sepgdby Xilinx. Memory components are
declared in that library. Using the memory compaséndescribed in Spartan-6 Libraries
Guide available from ISE Help. One should readphges titled BRAM in Chapter 2.

2. The BRAM can be configured with Core Generatat th a part of Xilinx ISE. Core Generator
will customize many options that are available RAv components, as well as provide a
netlist file that tiles several BRAM's togetherarg composite block of the size and aspect ratio
that is needed.

We recommend using the Core Generator because masiaatiation is tedious. Extensive help is
available from within the Core Generator. The Gatwrwill provide a set of files as well as a
comprehensive Data Sheet that explains all theaatedetails. We will not attempt to duplicate this
information in this manual. We only point out thia¢ Core Generator will wrap the BRAM blocks into

a component whose declaration should be placedhetpackage BlackVME _types as follows.

-- EXAMPLE: Dual port "simple memory" generated wit h Core Generator
-- Port A (BF write) N/2 cells each 32 bit wide
-- Port B (FPGA read) N cells each 16 bit wide

-- This component is in three files named "EXAMPLE_ BRAM_8Kk"
--.ngc, .xco, .vho. The .vho contains instructions .
-- FPGA side: 8k 16-bit samples. BF side: 4k 32-bi te words.

-- BF: Port A addr (11 : 0), but BF uses address (13:2)

-- FPGA: Port B addr (12 : 0)
COMPONENT EXAMPLE_BRAM_8k

PORT (

- port A, BF side

clka :IN std_logic;

ena . IN std_logic; -- read enable

wea :IN std_logic_ VECTOR(0 downto 0); -- write en able

addra :IN std_logic VECTOR(11 downto 0); -- (13:2) =12 bits

dina :IN std_logic_VECTOR(31 downto 0); -- Blackfi n writes directly to this
douta : OUT std_logic_VECTOR(31 downto 0); -- connec t this to a multiplexer

-- port B; FPGA side
clkb :IN std_logic;

enb . IN std_logic; -- read enable
web . IN std_logic_VECTOR(0 downto 0); -- write ena ble
addrb : IN std_logic_ VECTOR(12 downto 0); -- (12: 0) = 13 bits

dinb :IN std_logic_VECTOR(15 downto 0);
doutb : OUT std_logic_VECTOR(15 downto 0));
END COMPONENT;

This particular component has been tailored ton@@ds indicated with comments. We will refrain
from explaining the details because your requirdsieray be different. The memory component
named EXAMPLE_BRAM_8k can be instantiated in them&1DL file according to the rules
explained in the earlier sections.

17 Addressing blocks of on-chip memory

The dual-port BRAM is addressed from two sides. FR&A side can use a simple counter to step
through the memory range. The counter wraps aradmah all its bits are '1'. Waveform acquisition

can be restarted from the start of the memory bl@cdklecting the samples is performed when enabled,
otherwise the memory counter is not running. Lihélsrough 4 should be put in the declaration
section. The rest of the code should be put irtcatichitecture implementation.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; -- basic VHDL

use IEEE.STD_LOGIC_ARITH.ALL; -- basic arith metics on std vectors
SIGNAL MemAddr_ctr: STD_LOGIC_VECTOR (Nbit-1 dow nto 0); -- declaration

PROCESS (CLK, restart, enable) BEGIN
IF rising_edge (CLK) THEN
IF restart ='1' THEN
MemAddr_ctr <= (others =>"'0");
10. ELSIF enable ='1' THEN
11. MemAddr_ctr <= MemAddr_ctr + 1; -- this co unter wraps around

©XOX N~ ®WDN R

12. END IF;
13. END IF; -- CLK
14. END PROCESS;

The Blackfin side is a bit more complicated. Thad&fin address is split into two parts. The lower-
order bits (13 downto 2) are tied to the BRAM addrelhese bits do not include the two lowest order
bits 0 and 1 because the Blackfin address jumgeulry when the processor is working in the 32-bit
mode. The upper part (25 downto 15) of the Blachkfidress is used to select among multiple BRAM
blocks, using a variant of the address decoder shmiow.

-- At BF side, 4k-word needs 12-bit address, 13:2. The lowest select bit is 14.
MemSelect <= -- result addr

"000 1" WHEN BF_AMSO0& BF_ADDR(25 downto 14)="100000000000 0" ELSE -- 0x20000000
"00 10" WHEN BF_AMSO0& BF_ADDR(25 downto 14)="10000010000 00" ELSE -- 0x20100000
"0 100" WHEN BF_AMSO0& BF_ADDR(25 downto 14)="1000010000 000" ELSE -- 0x20200000
"1000" WHEN BF_AMSO0& BF_ADDR(25 downto 14)="100001100 0000" ELSE -- 0x20300000
(others=>'0");

We used a notation trick in the above example. AM&O0 select was prepended to the address bits
using the VHDL operatos that concatenates bits together. The leftmosirilhe address bit patterns
corresponds to the AMSO bit. In such a way we ditlhave to write a separate line of the VHDL code
that would AND the select vector with the AMSO Bihe ANDing was implicitly coded into the
address bit pattern used in the decoder. This&iradnotation shortcut is very handy, but it mayabe
bit confusing at the first sight. Neverthelesfatongs to the war chest of VHDL programming.

The MemSelect bit is then tied to the respectiveatde” bit of the Blackfin side of the BRAM. This

bit will place the BRAM at the address range intBdain the comment. For example, if we use the 0-th
bit, the memory will be mapped starting at addoegsoo0000 in hex. The reader should verify that

the Blackfin addresses are indeed as indicatdaeicdmments. Please read in the BF561 data sheet
what addresses correspond to which AMSx space wemperform this exercise.

18 Multiplexing BRAM memories for CPU readout

The outputs of the dual-port BRAM are not equipp#ith tristate buffers, which are avoided on-chip.
As a consequence, the BRAM outputs cannot be tiretited to the readout bus because they would
create electrical contention. Previously we did emtounter the contention because we declared the
register outputs using the tri-state notationW&iich was implemented with multiplexers behind the
scenes. Now we have to deal with the problem one rime.

Lacking the on-chip high-impedance 'Z' buffers, B#®AM outputs have to be multiplexed. We will
compare two different ways to infer the multiplexgne first example is provided by the ISE Synthesi
Constructs examples. It has been edited for clarity

--- Multiplexer

--- Code pattern from ISE Language Templates -> Syn thesis Constructs
1. process (select,inputl,input2,input3,input4)
2. begin
3. case selectis

when "00" => output <= inputl;

when "01" => output <= input2;

when "10" => output <= input3;

when "11" => output <= input4;

when others => output <= inputl; -- looks re dundant?
9. end case;

10. end process;

© No ok

The multiplexer circuit was coded agracess that does not reference the clock. Consequehgy, t
combinatorial circuitry will be inferred by the cqiter. Here we see that tiecess does not
necessarily imply that the circuit is clocked.Héte is no reference to the clock, then the cinilitbe
combinatorial. (As a reminder, the clock is impli®gdarising_edge , falling_edge , Or a construct
signal'event and signal="1" .) Line 8 covers non-boolean signal values sucX'ax 'Z'.

We now present another version of a multiplexet thakes the reference to the Blackfin AMS space.

1. TYPE BF_MemBus_t IS ARRAY (3 downto 0) OF STD_L OGIC_VECTOR (31 DOWNTO 0);
2.

3. -- array of BF memory outputs, 32 bits each.

4. SIGNAL BF_MemBus : BF_MemBus _t;

5.

6. MemorySpace0 <=

7. BF_MemBus (0) WHEN select="00" ELSE

8. BF_MemBus (1) WHEN select="01" ELSE

9. BF_MemBus (2) WHEN select="10" ELSE

10. BF_MemBus (3) WHEN select="11" ELSE

11. (others =>'Z");

12.

13. BF_DATA <= MemorySpace0 WHEN BF _rena0 ='1' ELS E (others=>'Z";

The type declaration from line 1 should be put ihi® central repositoriglackVME _typesThe output
MemorySpace0 is switched among bit vectoes_MemBusaccording to the selection bit pattern. In line
13 the output from the multiplexer is wired to 8lackfin data bus through a tristate buffer cori¢mal
by the read strobe. One should note that in omleomplete the circuit the individual MemBus vestor
are connected to the podsuta of the BRAM memories shown earlier. The other pdirta can be
wired directly to the Blackfin BF_DATA because bgimputs they cannot cause a contention.

All the tri-state 'Z' constructs are implementethwnultiplexers behind the scenes. It is good that
Xilinx compiler is kind enough to let us use thénatation which is very convenient.

19 Synchronizing an external signal to the FPGA cldc

We are now turning our attention to bit processivg.start with a very simple example. Let us make
sure that an external signal starts on an FPGAdocndary. This example can be applied to thetfron
panel NIM inputs. But first let's ask why do we&ar

The answer is that an unsynchronized signal isnpi@déy a very bad thing. Let's imagine that we use
an external NIM pulse to zero a time stamping tegi©K, so we connect it toreset of a free-
running counter similar to the one shown in SecfidnWe will find out that we indeed reset the
counter most of the time. But sometimes we do 8ometimes the counter starts from a seemingly
random bit pattern. What is going on?

The answer is “metastability”. Type this word todgte and several articles will pop up, documenting
the importance of the problem. The metastabilityuos when the signal edge hits the flip-flogust

the wrong momenviolating the timing requirements. Thest wrongis guaranteed to happen if we
repeatedly use a signal whose edge is unrelatide tclock. So we need to make sure that beforeyusin
the external NIM pulse inside the FPGA, we forseeitlge to be synchronized to the FPGA clock.

1. --ISE VHDL templates --> Synthesis Constructs - -> Misc --> Debounce
2. --**Insert the following between the "architectu re' and 'begin’' keywords**
3. signal Q1, Q2, Q3 : std_logic;

4.

5. --**Insert the following after the 'begin’ keywo rd**

6. process(CLK) begin

7. if rising_edge(CLK) then

8. Q1 <= external; -- time = 1. Can be meta stable.

9. Q2<=0Q1; -- time = 2. Good to use.

10. Q3<=0Q2; -- time = 3. Perfect to use.

11. end if;

12. end process;

The code describes a clocked circuit built witp-fliops. That's what we need. The three signals Q1,
Q2, and Q3 are copies of theernal , but delayed by one, two, and three clock cydsctly
speaking, Q1 is delayed by anything between zeddlanfull clock because theternal can hit the
flip-flop any time within the clock cycle. The Q& Q3 are in the fixed time relationship to Q1. The
Q2 should be good enough. The Q3 is guaranteed petect for the age of the Universe.

There can be two questions concerning this coggshi(a) How does it follow that Q1 is a delayed
copy ofexternal , and so on with Q2 and Q3? (b) How does it wowaay?

The answers: (a) Don't even ask. This kind of dedm idiom. If there is a rising edge, then thene
flip-flops. If there is a string of assignmentserirflip-flops are strung one after another. Thatiat we
need. (b) The circuit works through black magicdubasn probabilities. The topic is not an easy one.

20 Delaying a signal by a fixed number of clock cyes

The same circuit can be used to delay any bit fiyea number of clocks, three in this case. Just
replace thexternal ~ with any_signal internal to the FPGA. Thany_signal must belong to the
same clock domain. If it does not then we are urasg one. A signal belonging to another clock
domain is an external signal from the point of viefiwthe target domain.

21 Generating a short pulse lasting one clock cycle

The same circuit can be used to manufacture a pagtiag one clock cycle. Such a pulse can be usefu
because it corresponds to a leading edge. In atbets, you have a long pulse of unknown duration,
perhaps milliseconds. But you need a short pulsedet your counter and then start counting right
away without waiting till the long pulse goes awlgre is the solution. Apply the following to the Q
signals from the previous section on synchronizing.

pulsel <= Q1 and (not Q2); -- use with internal sign al
pulse2 <= Q2 and (not Q3); -- use with external sign al

One of these lines should be applied to the Q 8dnam the previous circuit. Version 1 produces th
pulse one clock earlier than version 2, but itisceptible to metastability. Version 2 should bedus
with external signals. There are some caveats vputiing in writing.

1. Somewhat surprisingly, this circuit seems to hitaie a single-clock pulse applied to its input.
One can say that applying the leading-edge detetticce makes no sense, so maybe there is
no problem. Nevertheless, annihilating single-clogluts was not expected. Beware.

2. Asimilar circuit described in the book by Chumages 114, 117 did not work well. Most often
it produced double-clock output, but sometimesaswa single clock. The behavior was bizarre.
We recommend our solution described in this sediecause it has been tested in Spartan-6.

22 Delaying a one-bit signal by a variable number aflock cycles

Now we are going to do some heavy lifting. We wandelay a signal by a variable number of clock
cycles, from 1 to 32 clocks. The signal will be doiewide (for example, the NIM input after it was
synchronized). We want that Blackfin controls tietag.

1. --**Insert the following at the beginning of th e file

2. library unisim; -- Xilinx library components

3. use unisim.vcomponents.all;

4.

5. --**Insert the following between the 'architect ure' and 'begin’
6. signal prgm: STD_LOGIC_VECTOR (4 downto 0);

7.

8. --**Insert the following after the 'begin’ keyw ord**

9. shift_register_32 taps: SRLC32E

10. generic map (INIT => X"00000000")

11. port map (

12. CLK => CLK, -- Clock input

13. D =>din, -- shift register bit input

14. Q31 =>open, -- SRL cascade output (connect o nly to next SRL)
15. A =>prgm, --5-bit shift depth static sele ct input
16. CE =>"1", -- Clock enable input, always en abled
17. Q =>dout -- output bit from shift registe r

18.);

We used a shift register SRL32 that Xilinx builtarBpartan-6. The number of delay “taps” can be
controlled with a register of the ty@@RL_reg_CPU_writes that was described earlier. The register
should be instantiated with 5 bits, because SRI&#is this number of control bits. The register will
be connected to the bit vectogm, which in turn will be wired to the shift registeontrol. The

register will be memory-mapped on the Blackfin buthe way elaborated earlier. The chain of
connections is sketched below. Writing down the LlHibatements is left as an exercise for the reader.

Blackfin bus - CTRL_reg_CPU_writes - prgm — shift_register_32_taps

In this way we demonstrated how the register corapbdescribed earlier can be utilized to implement
functionality that is both needed and not easyriplement without a war chest of proven components.

23 Delaying a multi-bit signal by a variable numberof clock cycles

Now we want to delay a multi-bit signal by a vateabumber of clock cycles, from 1 to 32 clocks. The
signal will be of any width. For example, we camagea stream of ADC samples in order to match a
time-of-flight difference among detector subsysteWiise want that Blackfin controls the delay.

-- Delay_Line_L32.vhd. (C) Wojtek Skulski 2003-2012

-- Input: prgm 0..31 means delay by 1..32 clocks

library IEEE;

use IEEE.std_logic_1164.all;

library unisim; -- Xilinx librar y components
use unisim.vcomponents.all;

ENTITY Delay_Line_L32 IS

GENERIC (PipeWdt: INTEGER := 14); -- default bit width of the stream
PORT (
CLK :in STD_LOGIC;
CE :in STD_LOGIC; -- clock enable
prgm :in STD_LOGIC_VECTOR (4 downto 0); -- d elay 0..31, input
din :in STD_LOGIC_VECTOR (PipeWdt-1 downto 0);
dout :out STD_LOGIC_VECTOR (PipeWdt-1 downto 0)

);
end Delay Line L32;

ARCHITECTURE SRL32 OF Delay_Line_L32 IS BEGIN
pipe: FOR i IN O TO PipeWdt-1 GENERATE

slice : SRLC32E
GENERIC MAP (INIT => X"00000000")

PORT MAP (
CLK => CLK, -- Clock input
D =>din(i), -- SRL data input
Q31 =>o0pen, -- SRL cascade output pin (connec t only to next SRL)
A =>prgm, --5-bit shift depth select input
CE =>CE, -- Clock enable can freeze the pi pe

Q =>dout(i)); -- SRL data output
END GENERATE pipe;
END SRL32; -- end of the component file

The component should be declared in the centralsigpyBlackVME_typeslt can be instantiated in

the design, connected to the registeRL_reg_CPU_writes , and controlled by the Blackfin. One can
change on the fly by how many clock ticks the dditaam will be delayed, from 1 to 32 clock ticks.

The chain of connections is similar to the previemample.

Blackfin bus - CTRL_reg_CPU_writes - prgm - Delay Line L32

The clock enable CE is a handy method of tempgr&ekezing the shift registers in their currentesta
It can be used to capture a stretch of the dagarstin the pipe. The captured samples can be then
clocked one by one from the pipe by pulsing the E&ch time the CE is pulsed HIGH for the duration
of one clock, one sample will be clocked out fréra €nd of the pipe, and one sample will be clocked

into it at the beginning. (Use the previous onetshanake single-clock CE pulses.) One should note
that the pipe cannot be accessed in parallel. Tihemethod of retrieving the samples is to cloahnth
out from the end of the pipe.

We will now present a code snippet that implemearganilar functionality, but this time the compiler
is allowed to infer the circuit.

1. -- Language templates --> Synthesis constructs --> Shift registers.
2.

3. TYPE Tpipe IS ARRAY(PipeLen-1 downto 0) OF

4, STD_LOGIC_VECTOR (PipeWdt-1 downto 0);

5. SIGNAL pipe: Tpipe;

6. -- The "dynamic shift register" should be infer red by synthesis.
7. process (CLK) begin

8. if rising_edge (CLK) then

9. pipe <= pipe(PipeLen-2 DOWNTO 0) & din;

10. end if;

11. end process;

12. dout <= pipe(conv_integer(prgm)); -- select the dynamic length

The difference between this snippet and the prevane is three fold. First, there is no clock eeabl
CE in the snippet. Adding the CE is left as an eiser Second, the length of the pipe is not dedlare
explicitly. The code is parametrized with the gegmeamedrPipeLen that can be any number. The
compiler can infer pipes of any length and implettbam any way it chooses. Most likely, the
compiler will string together as many SRL16 or SRIBocks as needed and it will connect fikgen
bits to implement the requested functionality.otisds more convenient than the component shown
earlier where the maximum delay was imposed bygutia library component SRL32 whose
maximum capacity is rigidly defined by its interrséucture.

The last difference between the previous code laistbne is that we can be reasonably certain what
the previous code was doing by just looking ahd aeading the SRL32 description in the Spartan-6
Libraries Guide. The margin for mistakes was reabbnnarrow in the former case. In the latter case
we think that we understand the function of thewirbased on the behavioral VHDL code. But there
can be a difference between what we think and wieatompiler is thinking, even though the code
snippet was copied from ISE Help. It happens noavtaen that the code snippets do not yield the
desired circuitry. The developer has to test tHebm®ral code snippets piece by piece.

24 Driving the clock off-chip

The next two sections are based on our experieitbesending a data stream from the FPGA to a
device that required double data rate (DDR). Thérmd solutions are applicable to about 100 MHz,
that is 100 megabits-per-second (Mbps) per 10 qirsingle data rate (SDR) and 200 Mbps for DDR.

DDR transmission is a common technique where dé&ale latched on both rising and falling clock
edges. It is commonly used together with sourcefsyonous transmission (SST) where both the data
and the associated clock are sent together froradhee to the destination along a multiwire cale

a bunch of printed circuit board traces with clgsehtched lengths. The idea is that as the clodk an

the data travel together, their phase relationshit distorted and the clock can be used to ltteh
data at the destination. The clock that is transwahito another device is calledaawarded clock

One should note that the received clock is defimisgwn clock domain at the destination, even in
those cases where it toggles at precisely the s@meency as some other clock in the destinatigp. ch
The captured bits must be transferred to the atloek domains with proper techniques described in
Xilinx application notes. The reader should sedhehfollowing web page for the wotéptureor a
phrasedata capture The relevant information can be found in XAPP22BPP709, XAPP802,
XAPP855, XAPP860, and others. The application noéesbe downloaded from the following page:

http://www.xilinx.com/support/documentation/applicam notes.htm

The referenced information is crucial in order &sign reliable data links between two FPGAs. The
problem is at the receiving end where the recetleck has no fixed relationship to the on-chip &loc
even if both toggle at the same frequency. Thestraiting end has no such problem because the data
and the forwarded clock are in phase with the dp-clock, which is in fact identical with the
forwarded clock.

The above considerations will be important if taader is planning to send the data from one FPGA to
another one at a high data rate, or along a cdlae appreciable length. The problem becomes less
severe in case of the on-board FIFO connectiondmivthe Spartan-6 FPGA and the Blackfin
processor, especially when the FPGA is the tramsmand Blackfin is the receiver of the FIFO data.
The Blackfin end of the FIFO is namedParallel Peripheral Interfac€PPI). Its timing is described on
page 28 of the BF561 Data Sheet revision D. Therd¢haee important observations concerning the
Blackfin PPI.

1. The PPI uses a single data rate (SDR) ratherDitd®. The data bits are latched on the rising
edge of the forwarded clock. The falling edge isutdized.

2. The PPI clock is an input-only pin at the Blaokéind. This is fine when Blackfin is receiving
the data. It may lead to some timing complicatibidackfin is sending the data, because the
data bits and the clock will then travel in the ogipe directions.

3. The bit capture was implemented by the desigoieBsackfin silicon. We do not need to bother
how the bits are captured at the Blackfin end.

4. The PPl is running at %2 of the Blackfin peripthetack that is {.x = 120 MHz on the
BlackVME board. It means that PPI is running a8z, that is a period of 16.7 ns, and half
period of 8.3 ns. Establishing a proper timing nrawgthin such a wide window should not be
too problematic. We only need to supply the biith\wroper bit-to-clock alignment described
on page 28 of the BF561 Data Sheet.

Now we will tackle the first part of the topic. Weant to drive the clock off-chip in order to gertera
the forwarded clock either for the Blackfin, or &mme other destination chip. Lets try this:

output_pin <= CLK;

The assignment is perfectly legal and it workedun previous design based on Spartan3A-DSP.
Unfortunately, upon seeing this assignment thed&fpiler violently complained about illegal clock
forwarding techniques in Spartan-6. We were adviegedad a paragraph from the Synthesis
Constructs— Coding Examples> Misc — Output Clock Forwarding Using DDR> Info (Clock
Forwarding). A part of the paragraph is reproduceldw.

The basic technique is to supply the input clock to an output DDR register where one

value is tied to a logic 0 and the other is tied to a logic 1. A clock can be made with
the same phase relationship (plus the added offset delay) or 180 degrees out of phase by
changing the 1 and 0 values to the inputs to the DD R register.

An example code for Spartan-6 was also suppliederhelp. We worked out the example as follows.

-- In Spartan6 we cannot simply drive the 0B with a clock signal.
-- We rather have to use "clock forwarding techniqu es" with ODDR?2 primitive.
-- The register output can be routed only to ILOGIC , IODELAY, or IOB.

ODDR2_clock : ODDR2
GENERIC MAP(

DDR_ALIGNMENT =>"NONE", -- Output alignment to "NONE", "C0", "C1"
INIT =>"0/, -- Initial state of the Q output to '0'or 'l
SRTYPE =>"ASYNC") -- Specifies "SYNC" or "ASYNC " set/reset
port map (

Q = CLK_ RAW -- output data (clock in this case) to output pad

CO0 => CLK180, -- clockO input to be forwarded

C1 => CLK, -- clockl input inverted

CE => HIGH, -- clock enable input

DO => HIGH, -- data input associated with Cloc kO

D1 => LOW, -- data input associated with Clock 1

R =>LOW, -- reset input

S =>LOW); -- set input

According to the quoted paragraph, plus other remended reading (Libraries Guide, the page about
ODDR2) the two signals CLK and CLK180 are the tvessions of the same clock out of phase by 180
degrees. We generated the inverted clock witrelfarce:

CLK180 <= NOT CLK;

This assignment was expected to bring another wheemplaints, but surprisingly there were none.
Should the compiler have complained, we would hasexl the Digital Clock Manager (DCM) to
create the inverted clock.

So how does the circuit work in the first place®Tdiea is simple: there are two clocks CO and C1.
One is an inverted copy of the other. Both clodlksusing theiteading edge$o send out two constant
signals, one HIGH and one LOW. The constants ane@cted to DO and D1, which are associated with
the two clocks. The DO is wired to clock CO, theiBired to clock C1. On each leading edge the
associated signal is sent out. That's how the D&fister is doing its job. (Read the Libraries Guide

The remaining issue is how to forward an SDR cliécke is planning to drive the Blackfin's PPI?
Actually, there is no such thing as the SDR cld@2hly the data can be either DDR or SDR in the
relation to the clock. Clock forwarding is handted same way in both the SDR and DDR cases.

In our application we faced an additional diffigulbecause the receiver expected the clock edfzdi to
in the middle of the bit “data eye”. It means ttieg clock and the data should bé 80t of phase,

while both were precisely in phase on-chip. We toeshift the output phase of the forwarded clock to
give it just the right timing margin relative toetldata bits. (If you are planning to drive the Rfat

PPI then look at page 28 of BF561 Data Sheet.) &l&ydd the clock with the IODELAY?2 that is built
into every Spartan-6 pin. The relevant code examatebe found onscreen in Device Primitive
Instantiation— Spartan-6— I/O Components- Input. For explanations please read about

IODELAY?2 in the Libraries Guide. We also note thfa “7” family of Xilinx devices disposed of the
output delay elements. Only the input delays rernrafrtix-7 or Kintex-7. Every new generation of
Xilinx devices makes our life even more interestingn it used to be under the previous generation.

-- It is not clear from documentation what a tap de lay really is.
-- Use the scope to examine bit-to-clock timing.
IODELAY2_clock : IODELAY?2
GENERIC MAP (
COUNTER_WRAPAROUND=> "WRAPAROUND", -- STAY_AT_LIMI®r WRAPAROUND

DATA_RATE =>"SDR", -- SDR or DDR
DELAY_SRC =>"ODATAIN", -- 10, ODATAIN or IDATAIN
IDELAY_MODE =>"NORMAL", -- Unsupported (NORMAL or PC)
IDELAY_TYPE =>" FI XED", -- FIXED, DEFAULT, VARIABLE_FROM_ZERO,...
IDELAY_VALUE =>0, -- Input Delay (0-255)
IDELAY2_VALUE => 0, -- Input Delay (0-255); only for PCI
ODELAY_VALUE =>XXX, -- Output delay (0-255). Use proper val ue
SERDES_MODE =>"NONE", -- NONE, MASTER or SLAVE
SIM_TAPDELAY_VALUE => 45) -- Used for simulation in ps

PORT MAP (-- all ports are 1-bit. FIXED mode does not use RST or clocks.
ODATAIN => CLK_RAW --in; Data input from OLOGIC or OSERDES.
IDATAIN =>LOW, -- in; Data input from IOB
T =>LOW, -- in; Tristate input. LOW=output, HIGH=in put.
CLK =>LOW, --in; Clock input from the fabric
DATAOUT => open, -- out; Delayed output to ISERDES/In put reg
DATAQOUT2 => open, -- out; Delayed output to general FPGA fabric
DOUT =>FORWARDED CLK, -- out; Delayed Data Output to output pin
TOUT => open, -- out; Delayed Tristate Out
IOCLKO => LOW, --in; Primary 1/O Clock input
IOCLK1 => LOW, --in; Secondary I/0O Clock input
RST =>LOW, -- in; Reset to zero or 1/2 of total per iod
CE =>LOW, -- in; Enable increment/decrement
INC =>LOW, --in; Increment / Decrement input
CAL =>LOW, -- in; Initiate calibration input
BUSY => open -- out; Busy after calibration CAL
); -- end of IODELAY2
OUT PIN<= FORWARDED CLK; -- OUT_PIN is routed to the receiver

The IODELAY?2 is inserted between the ODDR2 from pievious page and the output pin. In our case
we wanted dixed output delay for the signal. The delay is thus D what automatically renders

most options irrelevant. The numberdaflay tapseeds to be set XXX after you look at the scope.
The not-so-funny feature of Spartan-6 is that thieer of the delay tap is not guaranteed by Xilamq
therefore one has to use the scope to measurettia delay. Try 50 picoseconds per tap for a good
start and use the scope to make sure. It will diddayclock signal by XXX*50 ps, if the delay tapb8
picoseconds. But this value is only the first gu&ss will need to use the scope.

The very fact of inserting theDELAY2 is adding about 2.5 ns to the signal path (chgekt&n-6 Data
Sheet for exact value). It means that a rough adagnt of the clock to the bit “data eye” may be
achieved by just inserting theDELAY2 into the clock path without any further work, lilett ODELAY2
blocks are noinserted into the bit paths.

25 Driving the data bits off-chip

We will now discuss how to drive the data using$RR or DDR. Concerning the Single Data Rate,
there are two solutions. The first solution is dengdust write

output_pin <= data_bit;

We recommend this solution because of its simplitibte that the IODELAY?2 is omitted in the data
path, and therefore one can easily create a Z®aok-to-bit offset by inserting the IODELAY?2 into
the clock path, while the data bits are routedatiiyeo the output pins. Such an offset may be iregu
by the receiver (check the data sheet).

Another solution is to use tleDR2as explained in the previous section, but makéwioeDDR data
streams identical. The falling edge data will be same as the rising edge data, what effectivebnsie
there will be no bit transition on the falling cloedge. And this is precisely what SDR means.

-- Double data rate register used for SDR transmiss ion.
ODDRZ2_bit : ODDR2
GENERIC MAP(

DDR_ALIGNMENT =>"NONE", -- Output alignment to "NONE", "C0", "C1"
INIT => "0/, -- Initial state of the Q output to ‘0'or'1
SRTYPE =>"ASYNC") -- Specifies "SYNC" or "ASYNC " set/reset
port map (

Q = out put _si gnal , -- connect to either output pad or to IODELAY?2

C0 => CLK180, -- clockO input associated with DO

C1 => CLK, -- clockl input associated with D1

DO => same_dat a, -- data input associated with ClockO

D1 => sanme_dat a, -- data input associated with Clockl

CE => HIGH, -- clock enable input

R =>LOW, -- reset input

S =>LOW -- set input

);

Now we turn our attention to the DDR data streaituAlly, it is very simple. Replace the “same data”
in the previous example witlata_1 anddata_2 and you have created a DDR data stream, where
data_1 is coded on one edge, atwla_2 on the opposite edge of the clock.

The solutions outlined in this section are goodhlout 100 MHz, that is 100 Mbps per 10 pin for SDR
and 200 Mbps for DDR. The data rate can be incteabeut 5x using the SERDES blocks that are
built into every 10 pin. The reader is advisedtiedy Xilinx application notes concerning SERDES.

26 Conclusion and outlook

We walked the reader among several examples of Vpidgrams relevant to the BlackVME projects.
We are aware that the examples barely scratchutifiece. There are whole areas not covered with our
discussion, such as high-speed signal transmissienLVDS links, or digital signal processing. lasv
not possible to dive into these topics in an inticidry tutorial whose scope and size has to stay
limited. Nevertheless, we hope that even the lidhiteterial presented in this tutorial will be udét
jump starting your BlackVME work.

In this concluding section we want to collect sasbeervations and recommendations not mentioned
elsewhere. We suspect that the reader may feélowdriwhelmed and intimidated after the visit te th
whole new world of FPGA development. We want testtthat it is not as difficult as it might seem.
There are a few principles to keep in mind.

The FPGA work has to be much more rigidly struadutean it is customary with computer
programming. Let's face the reality. In principgemputer programs should be neatly written and well
documented. However, as most researchers probabbed, it is rarely the case. The computer code is
usually quickly cobbled together under the pressiitene. Any kind of crappy spaghetti code that is
doing the work is acceptable in research-grade ctengode. The kind of programming habits, that
work for computers, unfortunately will spell disaisin FPGA programming.

The reason behind the difference between the canpand the FPGA programs is the way the FPGA
compilers work. As we repeatedly stressed in tharial, FPGA compilers do not translate the
programs into the FPGA code line-by-line. The cderpirather look fopatternsand apply a process
calledinferring. The programmer is advised to make the compiié'sis easy as possible by using
only the well-defined patterns that the compilealide to recognize. The spaghetti kind of
programming may confuse the compiler and leadfariimg unintended circuitry. The FPGA netlist
will be produced by the compiler, but the outponhirsuch circuits may surprise the developer.

The FPGA program patterns can be put directly inéosource file. It is an acceptable practice ialsm
and medium projects. Larger projects should bedddiinto a set acfomponentseach one
implemented in its own source file. The componatdrfaces can be conveniently collected in a
packagethat we named BlackVME_types in our examples. Careuse more than one package, if the
number of components grows beyond what is suit@lola single file.

Testing is tremendously important in FPGA projettse tests need to be conducted while the pragect i
developed. An alternative to incremental testing isst plan executed after the coding is finished.
any case, significant thought and effort shouldi&eoted to testing the responses of the FPGA ¢t#cui
Testing can be conducted in software simulatiorth®fFPGA designs under the development
environment. All development systems such as IS&ige tools for testing the netlist responses. The
acid test can be conducted only with the actualware through looking at the FPGA outputs. LEDs
are tremendously useful, as well as the logic dstthat we provide with the BlackVME board. We
also provided the reconstruction DAC on our ADCdcdihe waveform reconstruction proved to be a
very useful tool for developing the signal procegsalgorithms.

SkuTek Instrumentation is offering FPGA developmesivices to our customers. Using our services
may be the most cost-effective method to implenyent application in the FPGA chip.

27 Important Notice

SkuTek Instrumentation reserves the right to makesctions, modifications, enhancements,
improvements, and other changes to its productsandces at any time and to discontinue any
product or service without notice. SkuTek doeswatrant or represent that any license, either esgpre
or implied, is granted under any SkuTek patenttrigbpyright, or other SkuTek intellectual property
right relating to any combination, machine, or @sxin which SkuTek products or services are used.
Information published by SkuTek regarding thirdtgaroducts or services does not constitute a
license from SkuTek to use such products or sesvocea warranty or endorsement thereof. SkuTek
products are not authorized for use in safetyeaitapplications (such as life support) where ffai

of the SkuTek product would reasonably be expettie@duse severe personal injury or death. Buyers
represent that they have all necessary expertigeisafety and regulatory ramifications of their
applications, and acknowledge and agree that tteegaely responsible for all legal, regulatory and
safety-related requirements concerning their prtsdacapplications and any use of SkuTek products
in such safety-critical applications, notwithstarglany applications-related information or supploat
may be provided by SkuTek. Further, Buyers musy fndemnify SkuTek and its representatives
against any damages arising out of the use of kpiducts in such safety-critical applications.
SkuTek products are neither designed nor intendiedde in military/aerospace applications or
environments. SkuTek products are neither desigoedihtended for use in automotive applications or
environments.

Linux software programs distributed by SkuTek far dinux-based products are open-source
software; you can redistribute it and/or modifysbgrograms under the terms of the GNU General
Public License as published by the Free Softwatmé&ation; either version 2 of the License, or (at
your option) any later version. The software proggare distributed in the hope that they will be
useful, but WITHOUT ANY WARRANTY:; without even thenplied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSESee the GNU General Public
License for more details.

You should have received a copy of the GNU Gerfeudlic License along with our Linux programs;
if not, see the files named COPYING, or write te ffree Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA.

You can incorporate FPGA firmware source code exaesngeveloped and distributed by SkuTek in
your projects either in their original form or mbed to suit your needs. The examples remain our
intellectual property. All rights are reserved dgu3ek to the extent permitted by law. Please ratain
copyright statement in all copies that you makes &les are distributed in the hope that théy wi
be useful, but WITHOUT ANY WARRANTY:; without evein¢ implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE

Source code examples developed by third partieairethe property of the respective owners.

